Rotational Dynamics & Non-Inertial Systems

Rotational Dynamics & Non-Inertial Systems

UG Physics (Honours) Notes


1๏ธโƒฃ Rotational Dynamics

Rotational motion deals with bodies that rotate about an axis. Just like linear motion involves force and momentum, rotation involves torque and angular momentum.


Centre of Mass (CoM)

The Centre of Mass of a system of particles is the point where the entire mass of the body can be assumed to be concentrated for analyzing motion.

For a system of particles:Rโƒ—=1Mโˆ‘imiriโƒ—\vec{R} = \frac{1}{M}\sum_i m_i \vec{r_i}R=M1โ€‹iโˆ‘โ€‹miโ€‹riโ€‹โ€‹

where M=โˆ‘miM = \sum m_iM=โˆ‘miโ€‹ is total mass.


Motion of Centre of Mass

  • The motion of CoM is independent of the internal forces.
  • External forces determine the motion:

Maโƒ—CM=โˆ‘Fโƒ—extM\vec{a}_{CM} = \sum \vec{F}_{ext}MaCMโ€‹=โˆ‘Fextโ€‹


Centre of Mass and Laboratory Frames

  • Laboratory Frame: The usual reference frame where we observe motion.
  • CoM Frame: Frame moving with the centre of mass.

Relationship between momenta:Pโƒ—lab=MVโƒ—CM\vec{P}_{lab} = M\vec{V}_{CM}Plabโ€‹=MVCMโ€‹


Angular Momentum

For a particle:Lโƒ—=rโƒ—ร—pโƒ—\vec{L} = \vec{r} \times \vec{p}L=rร—pโ€‹

For a system of particles:Lโƒ—total=โˆ‘Liโƒ—\vec{L}_{total} = \sum \vec{L_i}Ltotalโ€‹=โˆ‘Liโ€‹โ€‹


Principle of Conservation of Angular Momentum

If net external torque is zero:dLโƒ—dt=0โ‡’Lโƒ—=constant\frac{d\vec{L}}{dt} = 0 \Rightarrow \vec{L} = \text{constant}dtdLโ€‹=0โ‡’L=constant

Example: Figure skater spins faster by folding arms inward.


Rotation About a Fixed Axis

Moment of Inertia (MI)

MI is the rotational equivalent of mass:I=โˆ‘miri2I = \sum m_i r_i^2I=โˆ‘miโ€‹ri2โ€‹

Dependence:

  • Shape and size of the body
  • Axis of rotation
  • Distribution of mass

Theorems Used for MI Calculation

TheoremStatement
Parallel Axis TheoremI=ICM+Md2I = I_{CM} + Md^2I=ICMโ€‹+Md2
Perpendicular Axis TheoremIz=Ix+IyI_z = I_x + I_yIzโ€‹=Ixโ€‹+Iyโ€‹ (for planar bodies)

Routh Rule

A useful rule to find MI of symmetrical lamina:

ShapeMI
Rectangular plate13ML2\frac{1}{3}ML^231โ€‹ML2 (about an edge)

Moment of Inertia for Common Bodies

BodyAxisMI
Solid cylinderabout its axis12MR2\frac{1}{2}MR^221โ€‹MR2
Solid sphereabout diameter25MR2\frac{2}{5}MR^252โ€‹MR2
Hollow sphereabout diameter23MR2\frac{2}{3}MR^232โ€‹MR2

Kinetic Energy of Rotation

K=12Iฯ‰2K = \frac{1}{2} I \omega^2K=21โ€‹Iฯ‰2

If translation + rotation:K=12Iฯ‰2+12Mv2K = \frac{1}{2} I \omega^2 + \frac{1}{2}Mv^2K=21โ€‹Iฯ‰2+21โ€‹Mv2


Eulerโ€™s Equations for Rigid Body

I1ฯ‰1ห™โˆ’(I2โˆ’I3)ฯ‰2ฯ‰3=ฯ„1I2ฯ‰2ห™โˆ’(I3โˆ’I1)ฯ‰3ฯ‰1=ฯ„2I3ฯ‰3ห™โˆ’(I1โˆ’I2)ฯ‰1ฯ‰2=ฯ„3\begin{aligned} I_1 \dot{\omega_1} – (I_2 – I_3)\omega_2\omega_3 &= \tau_1 \\ I_2 \dot{\omega_2} – (I_3 – I_1)\omega_3\omega_1 &= \tau_2 \\ I_3 \dot{\omega_3} – (I_1 – I_2)\omega_1\omega_2 &= \tau_3 \end{aligned}I1โ€‹ฯ‰1โ€‹ห™โ€‹โˆ’(I2โ€‹โˆ’I3โ€‹)ฯ‰2โ€‹ฯ‰3โ€‹I2โ€‹ฯ‰2โ€‹ห™โ€‹โˆ’(I3โ€‹โˆ’I1โ€‹)ฯ‰3โ€‹ฯ‰1โ€‹I3โ€‹ฯ‰3โ€‹ห™โ€‹โˆ’(I1โ€‹โˆ’I2โ€‹)ฯ‰1โ€‹ฯ‰2โ€‹โ€‹=ฯ„1โ€‹=ฯ„2โ€‹=ฯ„3โ€‹โ€‹

Used for bodies rotating without symmetry (e.g., satellites).


Moment of Inertia of a Flywheel

A flywheel is a heavy rotating wheel used to store rotational energy.

Energy stored:E=12Iฯ‰2E = \frac{1}{2} I \omega^2E=21โ€‹Iฯ‰2


2๏ธโƒฃ Non-Inertial Systems

A non-inertial frame is one that is accelerating relative to an inertial frame. In such frames, fictitious forces appear.

Examples: Accelerating car, rotating Earth.


Uniformly Rotating Frame

Consider a body in a frame rotating with angular velocity ฯ‰โƒ—\vec{\omega}ฯ‰. Two significant forces appear:


Centrifugal Force

A force acting outward from the center in a rotating frame:Fโƒ—centrifugal=m(ฯ‰โƒ—ร—(ฯ‰โƒ—ร—rโƒ—))\vec{F}_{centrifugal} = m(\vec{\omega} \times (\vec{\omega} \times \vec{r}))Fcentrifugalโ€‹=m(ฯ‰ร—(ฯ‰ร—r))

Example: Mud thrown off a rotating tyre.


Coriolis Force

Acts on a body when it moves within a rotating frame:Fโƒ—coriolis=โˆ’2m(ฯ‰โƒ—ร—vโƒ—)\vec{F}_{coriolis} = -2m(\vec{\omega} \times \vec{v})Fcoriolisโ€‹=โˆ’2m(ฯ‰ร—v)

Example:

  • Deflection of winds on Earth (cyclones rotate anti-clockwise in Northern Hemisphere).
  • Path of a falling object shifts sideways.

Laws of Physics in Rotating Systems

To apply Newtonโ€™s laws in rotating frames, add fictitious forces:Fโƒ—effective=Fโƒ—real+Fโƒ—centrifugal+Fโƒ—coriolis\vec{F}_{effective} = \vec{F}_{real} + \vec{F}_{centrifugal} + \vec{F}_{coriolis}Feffectiveโ€‹=Frealโ€‹+Fcentrifugalโ€‹+Fcoriolisโ€‹


Conclusion

Rotational dynamics connects linear and rotational motion using moment of inertia, torque, and angular momentum. Non-inertial reference frames help explain many natural phenomena like atmospheric motion and satellite movement.

Previous post

เฌงเฌฐเญเฌฎเฌพเฌจเญเฌคเฌฐ เฌ“ เฌนเฌฟเฌจเญเฌฆเญ เฌธเฌ‚เฌธเญเฌ•เญƒเฌคเฌฟ เฌธเญเฌฐเฌ•เญเฌทเฌพ โ€“ เฌ‡เฌคเฌฟเฌนเฌพเฌธ, เฌฌเฌฐเญเฌคเญเฌคเฌฎเฌพเฌจ เฌ“ เฌธเฌฎเฌพเฌงเฌพเฌจ

Next post

๐Ÿ“˜ Elasticity & Fluid Motion

Leave a Reply

You May Have Missed

wpChatIcon
wpChatIcon