Vector Differentiation and Vector Integration

Vector Differentiation and Vector Integration

Calculus โ€“ II | Undergraduate Mathematics Notes

Vectors play a crucial role in describing physical quantities such as force, velocity, electric and magnetic fields. Vector calculus deals with the differentiation and integration of vector fields in space.


๐Ÿ”น 1๏ธโƒฃ Vector Differentiation

Directional Derivative

Measures the rate of change of a scalar field in a given direction.

If f(x,y,z)f(x,y,z)f(x,y,z) is a scalar field and a^\hat{a}a^ is a unit vector:Da^f=โˆ‡fโ‹…a^D_{\hat{a}}f = \nabla f \cdot \hat{a}Da^โ€‹f=โˆ‡fโ‹…a^

If this direction is normal to a surface, it is called the normal derivative.


Gradient of a Scalar Field

Gradient gives the maximum rate of change of a scalar field.โˆ‡f=(โˆ‚fโˆ‚x)i^+(โˆ‚fโˆ‚y)j^+(โˆ‚fโˆ‚z)k^\nabla f = \left(\frac{\partial f}{\partial x}\right)\hat{i} + \left(\frac{\partial f}{\partial y}\right)\hat{j} + \left(\frac{\partial f}{\partial z}\right)\hat{k}โˆ‡f=(โˆ‚xโˆ‚fโ€‹)i^+(โˆ‚yโˆ‚fโ€‹)j^โ€‹+(โˆ‚zโˆ‚fโ€‹)k^

๐Ÿ“Œ Geometrical Interpretation

  • Gradient is perpendicular to the level surface f=constantf = constantf=constant
  • Its magnitude gives the steepest slope

Divergence of a Vector Field

Indicates how much a vector field is spreading out from a point.

For vector field Aโƒ—=Axi^+Ayj^+Azk^\vec{A} = A_x\hat{i}+A_y\hat{j}+A_z\hat{k}A=Axโ€‹i^+Ayโ€‹j^โ€‹+Azโ€‹k^:โˆ‡โ‹…Aโƒ—=โˆ‚Axโˆ‚x+โˆ‚Ayโˆ‚y+โˆ‚Azโˆ‚z\nabla \cdot \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}โˆ‡โ‹…A=โˆ‚xโˆ‚Axโ€‹โ€‹+โˆ‚yโˆ‚Ayโ€‹โ€‹+โˆ‚zโˆ‚Azโ€‹โ€‹


Curl of a Vector Field

Measures rotation in the field.โˆ‡ร—Aโƒ—=โˆฃi^j^k^โˆ‚xโˆ‚yโˆ‚zAxAyAzโˆฃ\nabla \times \vec{A} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \partial_x & \partial_y & \partial_z \\ A_x & A_y & A_z \end{vmatrix}โˆ‡ร—A=โ€‹i^โˆ‚xโ€‹Axโ€‹โ€‹j^โ€‹โˆ‚yโ€‹Ayโ€‹โ€‹k^โˆ‚zโ€‹Azโ€‹โ€‹โ€‹


Del Operator (โˆ‡)

A differential operator:โˆ‡=i^โˆ‚โˆ‚x+j^โˆ‚โˆ‚y+k^โˆ‚โˆ‚z\nabla = \hat{i}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z}โˆ‡=i^โˆ‚xโˆ‚โ€‹+j^โ€‹โˆ‚yโˆ‚โ€‹+k^โˆ‚zโˆ‚โ€‹

Used to define gradient, divergence, and curl.


Laplacian Operator

โˆ‡2f=โˆ‡โ‹…(โˆ‡f)=โˆ‚2fโˆ‚x2+โˆ‚2fโˆ‚y2+โˆ‚2fโˆ‚z2\nabla^2 f = \nabla \cdot (\nabla f) = \frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}+\frac{\partial^2 f}{\partial z^2}โˆ‡2f=โˆ‡โ‹…(โˆ‡f)=โˆ‚x2โˆ‚2fโ€‹+โˆ‚y2โˆ‚2fโ€‹+โˆ‚z2โˆ‚2fโ€‹

Used in heat equation, wave equation, Poissonโ€™s equation.


Important Vector Identities

โˆ‡โ‹…(โˆ‡ร—Aโƒ—)=0\nabla \cdot (\nabla \times \vec{A}) = 0โˆ‡โ‹…(โˆ‡ร—A)=0 โˆ‡ร—(โˆ‡f)=0\nabla \times (\nabla f) = 0โˆ‡ร—(โˆ‡f)=0 โˆ‡โ‹…(fAโƒ—)=f(โˆ‡โ‹…Aโƒ—)+Aโƒ—โ‹…(โˆ‡f)\nabla \cdot (f\vec{A}) = f(\nabla \cdot \vec{A}) + \vec{A} \cdot (\nabla f)โˆ‡โ‹…(fA)=f(โˆ‡โ‹…A)+Aโ‹…(โˆ‡f) โˆ‡ร—(fAโƒ—)=f(โˆ‡ร—Aโƒ—)+โˆ‡fร—Aโƒ—\nabla \times (f\vec{A}) = f(\nabla \times \vec{A}) + \nabla f \times \vec{A}โˆ‡ร—(fA)=f(โˆ‡ร—A)+โˆ‡fร—A


๐Ÿ”น 2๏ธโƒฃ Vector Integration

Ordinary Integrals of Vectors

If Aโƒ—(t)\vec{A}(t)A(t) is a vector-valued function:โˆซAโƒ—(t)โ€‰dt=(โˆซAxdt)i^+(โˆซAydt)j^+(โˆซAzdt)k^\int \vec{A}(t)\,dt = \left(\int A_x dt\right)\hat{i} + \left(\int A_y dt\right)\hat{j} + \left(\int A_z dt\right)\hat{k}โˆซA(t)dt=(โˆซAxโ€‹dt)i^+(โˆซAyโ€‹dt)j^โ€‹+(โˆซAzโ€‹dt)k^


Multiple Integrals

Used to integrate over regions of:

  • Line (1D)
  • Surface (2D)
  • Volume (3D)

Jacobian

For transformation from variables (x,y,z)(x, y, z)(x,y,z) to (u,v,w)(u, v, w)(u,v,w):J=โˆ‚(x,y,z)โˆ‚(u,v,w)=โˆฃโˆ‚xโˆ‚uโˆ‚xโˆ‚vโˆ‚xโˆ‚wโˆ‚yโˆ‚uโˆ‚yโˆ‚vโˆ‚yโˆ‚wโˆ‚zโˆ‚uโˆ‚zโˆ‚vโˆ‚zโˆ‚wโˆฃJ = \frac{\partial(x,y,z)}{\partial(u,v,w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}J=โˆ‚(u,v,w)โˆ‚(x,y,z)โ€‹=โ€‹โˆ‚uโˆ‚xโ€‹โˆ‚uโˆ‚yโ€‹โˆ‚uโˆ‚zโ€‹โ€‹โˆ‚vโˆ‚xโ€‹โˆ‚vโˆ‚yโ€‹โˆ‚vโˆ‚zโ€‹โ€‹โˆ‚wโˆ‚xโ€‹โˆ‚wโˆ‚yโ€‹โˆ‚wโˆ‚zโ€‹โ€‹โ€‹

Important in changing coordinates (cartesian โ†’ cylindrical โ†’ spherical).


๐Ÿ”น Infinitesimal Elements

TypeSymbolExample
Linedrโƒ—d\vec{r}dralong a curve
SurfacedSโƒ—d\vec{S}dStiny patch of a surface
VolumedVdVdVtiny block in space

๐Ÿ”น Line Integral of a Vector Field

โˆซCAโƒ—โ‹…drโƒ—\int_C \vec{A} \cdot d\vec{r}โˆซCโ€‹Aโ‹…dr

Used in work done by a force field.


๐Ÿ”น Surface Integral

โˆฌSAโƒ—โ‹…dSโƒ—\iint_S \vec{A} \cdot d\vec{S}โˆฌSโ€‹Aโ‹…dS

Measures flux crossing a surface.


๐Ÿ”น Volume Integral

โˆญVfโ€‰dV\iiint_V f\, dVโˆญVโ€‹fdV

Used in computing charge, mass, or density over a volume.


โญ Vector Theorems (Applications Only)

(1) Gauss’ Divergence Theorem

Relates volume integral of divergence to flux through boundary surface:โˆญV(โˆ‡โ‹…Aโƒ—)โ€‰dV=โˆฌSAโƒ—โ‹…dSโƒ—\iiint_V (\nabla \cdot \vec{A})\, dV = \iint_S \vec{A} \cdot d\vec{S}โˆญVโ€‹(โˆ‡โ‹…A)dV=โˆฌSโ€‹Aโ‹…dS


(2) Stokesโ€™ Theorem

Relates surface integral of curl to line integral around boundary curve:โˆฌS(โˆ‡ร—Aโƒ—)โ‹…dSโƒ—=โˆฎCAโƒ—โ‹…drโƒ—\iint_S (\nabla \times \vec{A}) \cdot d\vec{S} = \oint_C \vec{A} \cdot d\vec{r}โˆฌSโ€‹(โˆ‡ร—A)โ‹…dS=โˆฎCโ€‹Aโ‹…dr


(3) Greenโ€™s Theorem (2D version of Stokes)

โˆฎC(Pdx+Qdy)=โˆฌR(โˆ‚Qโˆ‚xโˆ’โˆ‚Pโˆ‚y)dA\oint_C (Pdx + Qdy) = \iint_R \left(\frac{\partial Q}{\partial x} – \frac{\partial P}{\partial y}\right)dAโˆฎCโ€‹(Pdx+Qdy)=โˆฌRโ€‹(โˆ‚xโˆ‚Qโ€‹โˆ’โˆ‚yโˆ‚Pโ€‹)dA

Applications:

  • Fluid flow
  • Electromagnetic theory
  • Heat and wave studies

๐Ÿ“Œ Conclusion

TopicKey Idea
Vector differentiationMeasures change (gradient/divergence/curl)
Vector integrationMeasures accumulated effect in space
TheoremsConvert difficult integrals into simpler geometrical forms

These concepts form the backbone of sciences and engineering, especially electromagnetism, fluid mechanics, robotics, and quantum physics.

Previous post

Orthogonal Curvilinear Coordinates and Dirac Delta Function

Next post

เฌงเฌฐเญเฌฎเฌพเฌจเญเฌคเฌฐ เฌ“ เฌนเฌฟเฌจเญเฌฆเญ เฌธเฌ‚เฌธเญเฌ•เญƒเฌคเฌฟ เฌธเญเฌฐเฌ•เญเฌทเฌพ โ€“ เฌ‡เฌคเฌฟเฌนเฌพเฌธ, เฌฌเฌฐเญเฌคเญเฌคเฌฎเฌพเฌจ เฌ“ เฌธเฌฎเฌพเฌงเฌพเฌจ

Leave a Reply

You May Have Missed

wpChatIcon
wpChatIcon