×

📘 Oscillations & Special Theory of Relativity

📘 Oscillations & Special Theory of Relativity

UG Physics (Honours) Notes


🔹 1️⃣ Oscillations

⭐ Simple Harmonic Motion (SHM)

A body performs SHM when acceleration is directly proportional to displacement and directed towards the mean position:a=ω2xa = -\omega^2 xa=−ω2x

General solution:x(t)=Acos(ωt+ϕ)x(t) = A\cos (\omega t + \phi)x(t)=Acos(ωt+ϕ)

Where:
AAA = amplitude, ω\omegaω= angular frequency, ϕ\phiϕ= phase constant


Energy in SHM

FormExpression
Kinetic EnergyK=12mω2(A2x2)K = \frac{1}{2}m\omega^2 (A^2 – x^2)K=21​mω2(A2−x2)
Potential EnergyU=12mω2x2U = \frac{1}{2}m\omega^2 x^2U=21​mω2×2
Total EnergyE=12mω2A2E = \frac{1}{2}m\omega^2 A^2E=21​mω2A2

Time Average Values:

K=U=14mω2A2\langle K \rangle = \langle U \rangle = \frac{1}{4}m\omega^2A^2⟨K⟩=⟨U⟩=41​mω2A2 E=12mω2A2=constant\langle E \rangle = \frac{1}{2}m\omega^2A^2 = \text{constant}⟨E⟩=21​mω2A2=constant


⭐ Damped Oscillations

Equation of motion:mx¨+bx˙+kx=0m\ddot{x} + b\dot{x} + kx = 0mx¨+bx˙+kx=0

Where bbb = damping constant

Types of damping

ConditionNatureBehavior
b2<4mkb^2 < 4mkb2<4mkUnderdampedOscillatory motion with decreasing amplitude
b2=4mkb^2 = 4mkb2=4mkCritically dampedFastest return to equilibrium — no oscillation
b2>4mkb^2 > 4mkb2>4mkOverdampedVery slow — no oscillation

Solution (underdamped):x(t)=Aeγtcos(ωt+ϕ)x(t) = Ae^{-\gamma t}\cos(\omega’ t + \phi)x(t)=Ae−γtcos(ω′t+ϕ)

Where γ=b2m\gamma = \frac{b}{2m}γ=2mb​, ω=ω2γ2\omega’ = \sqrt{\omega^2 – \gamma^2}ω′=ω2−γ2​


⭐ Forced Oscillations

Equation:mx¨+bx˙+kx=F0cos(ωt)m\ddot{x} + b\dot{x} + kx = F_0\cos(\omega t)mx¨+bx˙+kx=F0​cos(ωt)

Two states:

  • Transient → short-lived
  • Steady → long time motion

Amplitude:

A(ω)=F0(kmω2)2+(bω)2A(\omega) = \frac{F_0}{\sqrt{(k – m\omega^2)^2 + (b\omega)^2}}A(ω)=(k−mω2)2+(bω)2​F0​​


⭐ Resonance

Maximum amplitude occurs at:ω=ω0=km\omega = \omega_0 = \sqrt{\frac{k}{m}}ω=ω0​=mk​​

Quality Factor:

Q=ω02γQ = \frac{\omega_0}{2\gamma}Q=2γω0​​

Higher QQQ → sharper resonance → more energy stored


⭐ Bar Pendulum

Time period:T=2πImgdT = 2\pi\sqrt{\frac{I}{mgd}}T=2πmgdI​​

Where III = moment of inertia, ddd = distance between pivot & center of mass


⭐ Kater’s Pendulum

Precision pendulum to determine acceleration due to gravity ggg:g=4π2LT2g = 4\pi^2\frac{L}{T^2}g=4π2T2L​

Where LLL is equivalent length.



⚡ 2️⃣ Special Theory of Relativity

⭐ Michelson–Morley Experiment

  • Aim: Detect motion of Earth through aether
  • Result: No fringe shift → aether does not exist
  • Conclusion → Speed of light is constant in all inertial frames

⭐ Einstein’s Postulates

1️⃣ Laws of physics same in all inertial frames
2️⃣ Speed of light ccc is constant and maximum, independent of motion of source or observer


⭐ Lorentz Transformations

Connecting space-time coordinates of two inertial observers:x=γ(xvt)x’ = \gamma(x – vt)x′=γ(x−vt) t=γ(tvxc2)t’ = \gamma\left(t – \frac{vx}{c^2}\right)t′=γ(t−c2vx​)

Where:γ=11v2c2\gamma = \frac{1}{\sqrt{1 – \frac{v^2}{c^2}}}γ=1−c2v2​​1​


🕒 Time Dilation

Δt=γΔt0\Delta t = \gamma \Delta t_0Δt=γΔt0​

📏 Length Contraction

L=L0γL = \frac{L_0}{\gamma}L=γL0​​


🔹 Relativistic Velocity Transformation

u=uv1uvc2u’ = \frac{u – v}{1 – \frac{uv}{c^2}}u′=1−c2uv​u−v​


🔹 Relativistic Mass

m=γm0m = \gamma m_0m=γm0​


🌟 Mass–Energy Equivalence

E=mc2=γm0c2E = mc^2 = \gamma m_0c^2E=mc2=γm0​c2

When at rest:E0=m0c2E_0 = m_0c^2E0​=m0​c2


🔹 Relativistic Doppler Effect

If source & observer moving closer:ν=ν01+β1β\nu = \nu_0 \sqrt{\frac{1 + \beta}{1 – \beta}}ν=ν0​1−β1+β​​

Where β=v/c\beta = v/cβ=v/c


🔹 Relativistic Momentum & Energy

p=γm0vp = \gamma m_0 vp=γm0​v E2=p2c2+m02c4E^2 = p^2c^2 + m_0^2c^4E2=p2c2+m02​c4


📌 Summary Table

Relativity ConceptKey Formula
Time DilationΔt=γΔt0\Delta t = \gamma \Delta t_0Δt=γΔt0​
Length ContractionL=L0/γL = L_0/\gammaL=L0​/γ
Relativistic Massm=γm0m = \gamma m_0m=γm0​
EnergyE=γm0c2E = \gamma m_0c^2E=γm0​c2
Momentump=γm0vp = \gamma m_0 vp=γm0​v

⭐ Applications of Relativity

  • Particle accelerators
  • GPS satellite clock corrections
  • Nuclear reactions E=mc2E = mc^2E=mc2
  • Space travel physics

✨ Want additions?

I can provide:

✔ Numerical Problems with solutions
✔ MCQ + Short & Long Questions
✔ PDF with diagrams for print or upload
✔ Topic-wise PPT slides for classroom teaching

Post Comment

You May Have Missed

wpChatIcon
wpChatIcon